JSON Schema Builder
Build and test JSON schemas with a visual interface
New Schema
A new JSON schema
No properties defined
Click "Add Field" to get started
Build and test JSON schemas with a visual interface
A new JSON schema
No properties defined
Click "Add Field" to get started
Build robust JSON schemas for AI and Large Language Model applications with our visual schema builder. As OpenAI, Anthropic, and Google implement 100% reliable structured outputs, having well-defined JSON schemas is critical for production AI systems. Whether you're defining schemas for ChatGPT function calling, Claude tool use, Gemini structured outputs, or building multi-agent AI systems, our schema builder helps you create, validate, and export schemas that ensure your AI outputs are predictable, type-safe, and production-ready in 2025.
The breakthrough in AI structured outputs means LLMs can now guarantee 100% schema compliance. Here's how major AI platforms leverage JSON Schema in 2025:
Multi-agent AI systems require precise data contracts. Our schema builder helps you create schemas for agent communication, ensuring reliable handoffs and data consistency:
{ "$schema": "http://json-schema.org/draft-07/schema#", "title": "AI Agent Task Handoff", "type": "object", "required": ["task_id", "source_agent", "target_agent", "payload", "context"], "properties": { "task_id": { "type": "string", "format": "uuid", "description": "Unique task identifier" }, "source_agent": { "type": "string", "enum": ["researcher", "analyzer", "writer", "reviewer"], "description": "Agent initiating the handoff" }, "target_agent": { "type": "string", "enum": ["researcher", "analyzer", "writer", "reviewer"], "description": "Agent receiving the task" }, "payload": { "type": "object", "description": "Task-specific data" }, "context": { "type": "object", "properties": { "conversation_history": {"type": "array"}, "shared_memory": {"type": "object"}, "priority": {"type": "string", "enum": ["low", "medium", "high", "critical"]} } } } }
💡 Pro Tip: Use enums for agent types and priorities to ensure consistent communication between agents in your multi-agent systems.
Define precise parameter schemas for LLM function calls, ensuring type safety and validation for tool use.
Create schemas for extracting structured information from unstructured text using AI models.
Build schemas for retrieval-augmented generation systems, defining document structures and metadata.
Design schemas for classifying user intents with confidence scores and entity extraction.
Many AI developers use Pydantic models in Python. Our builder helps you convert between Pydantic and JSON Schema formats:
# Python Pydantic Model from pydantic import BaseModel, Field from typing import List, Optional class AIResponse(BaseModel): content: str = Field(..., min_length=10, max_length=1000) confidence: float = Field(..., ge=0, le=1) sources: Optional[List[str]] = Field(default=None) reasoning: str = Field(..., description="AI's reasoning process") # Export to JSON Schema schema = AIResponse.model_json_schema() # Use in OpenAI API response = openai.chat.completions.create( model="gpt-4.1", response_format={"type": "json_schema", "json_schema": schema} )
JSON Schema is a declarative language for validating the structure and data types of JSON data, essential for API contracts and data validation.
Define constraints like required fields, data types, string patterns, numeric ranges, and array lengths to ensure data integrity.
Schemas serve as living documentation, clearly communicating data structures between teams and systems.
Generate TypeScript interfaces, Python classes, or validation code directly from schemas, accelerating development.
Use if/then/else patterns to create adaptive schemas based on AI output type:
{ "if": { "properties": {"response_type": {"const": "analysis"}} }, "then": { "required": ["metrics", "insights", "recommendations"] }, "else": { "required": ["summary", "key_points"] } }
Combine multiple schemas using allOf, anyOf, and oneOf for flexible validation:
{ "oneOf": [ {"$ref": "#/definitions/TextGeneration"}, {"$ref": "#/definitions/CodeGeneration"}, {"$ref": "#/definitions/DataAnalysis"} ], "definitions": { "TextGeneration": {...}, "CodeGeneration": {...}, "DataAnalysis": {...} } }
Schema Version | AI Platform Support | Key Features | Recommendation |
---|---|---|---|
Draft-07 | OpenAI, Claude, Gemini | if/then/else, const | ✅ Best for AI |
Draft 2020-12 | Limited support | $dynamicRef, prefixItems | ⚠️ Check compatibility |
Draft-06 | Wide support | const, examples | ✅ Safe fallback |
Draft-04 | Legacy support | Basic validation | ❌ Avoid if possible |
{ "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "required": ["response", "intent", "suggested_actions"], "properties": { "response": { "type": "string", "minLength": 20, "maxLength": 500 }, "intent": { "type": "string", "enum": ["question", "complaint", "feedback", "purchase"] }, "suggested_actions": { "type": "array", "items": { "type": "object", "required": ["action", "label"], "properties": { "action": {"type": "string"}, "label": {"type": "string"} } } }, "escalate": { "type": "boolean", "description": "Whether to escalate to human agent" } } }
{ "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "required": ["title", "content", "metadata"], "properties": { "title": { "type": "string", "maxLength": 100 }, "content": { "type": "string", "minLength": 100 }, "metadata": { "type": "object", "required": ["category", "tags", "seo"], "properties": { "category": {"type": "string"}, "tags": { "type": "array", "items": {"type": "string"}, "minItems": 3, "maxItems": 10 }, "seo": { "type": "object", "properties": { "description": {"type": "string", "maxLength": 160}, "keywords": {"type": "array", "items": {"type": "string"}} } } } } } }
Most modern AI APIs support JSON Schema either natively (OpenAI, Claude) or through prompt engineering. For models without native support, include the schema in your system prompt with clear instructions.
While AI models can handle complex nested schemas, simpler schemas generally yield better results. Aim for clarity over complexity, and use schema composition to break down complex structures.
Absolutely! Use semantic versioning in your schema $id field. This helps track changes, maintain backward compatibility, and coordinate updates across your AI pipeline.
Yes! Studies show that well-defined schemas can improve AI output accuracy by 35-40%. Adding a "reasoning" field, even if unused, can further improve accuracy by forcing structured thinking.
Use our builder's validation feature to test schemas against sample data. Also test with minimal valid data, maximal valid data, and intentionally invalid data to ensure proper validation.
Ready to create robust schemas for your AI applications? Our visual JSON Schema builder makes it easy to design, validate, and export schemas that ensure your AI outputs are reliable and production-ready. Start with our AI templates or build from scratch - either way, you'll have schemas that work perfectly with OpenAI, Claude, Gemini, and other AI platforms.